Solving PDEs of fractional order using the unified transform method
نویسندگان
چکیده
منابع مشابه
The Unified Transform Method for Linear PDEs
There exist certain nonlinear evolution PDEs which can be mapped to linear evolution PDEs. The prototypical such linearizable PDE is the so-called Burger's equation u t − u xx = 2uu x , (1.1) which can be written in the conservation form ∂ t u = ∂ x (u x + u 2). Employing the so-called Cole-Hopf transformation u = q x q (1.2) and using the identity ∂ t q x q = ∂ t ∂ x ln q = ∂ x ∂ t ln q = ∂ x ...
متن کاملThe spectral iterative method for Solving Fractional-Order Logistic Equation
In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...
متن کاملA New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
A unified Petrov–Galerkin spectral method for fractional PDEs
Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time integrations. We develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for a weak formulation of the general linear Fractional Partial Differential Equations (FPDEs) of the form 0D t u + d j=1 c j [a jD 2μ j x j u ] + γ u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2018
ISSN: 0096-3003
DOI: 10.1016/j.amc.2018.07.061